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Abstract—Due to its relatively few assumptions, independent
component analysis (ICA) has become a widely-used tool for
the analysis of functional magnetic resonance imaging (fMRI)
data. In its application, Infomax, has been by far the most
frequently used ICA algorithm, primarily because it is the first
ICA algorithm applied to fMRI analysis. However, now there are
a number of more flexible ICA algorithms, which can exploit
multiple types of statistical properties of the signals with fewer
assumptions. In this work, we investigate the performance of
Infomax and two of the more recent ICA algorithms, entropy
bound minimization (EBM) and entropy rate bound minimization
(ERBM), on resting state fMRI data derived from a large
number of patients with schizophrenia (SZs) and healthy controls
(HCs). In order to overcome the difficulty of directly comparing
the performances of different ICA algorithms on real fMRI
data, we propose the use of graph theoretic (GT) metrics to
assess the quality of an ICA decomposition by measuring an
algorithm’s ability to capture the inherent differences between
SZs and HCs. Our results show that ERBM, the algorithm which
incorporates the greatest number of statistical properties of the
signals, provides the best performance for fMRI analysis.

I. INTRODUCTION

The use of blind source separation (BSS) for the analysis
of functional magnetic resonance imaging (fMRI) data has
facilitated the understanding of how different regions of the
brain interact during the performance of a task and at rest.
One of the most popular BSS techniques for the analysis
of fMRI data is independent component analysis (ICA) [1].
ICA is able to extract latent sources from the observed data,
through the assumption of statistical independence and a linear
mixing model. Since the extracted components across different
subjects are expected to share some similarity, BSS techniques
such as group ICA (GICA) [2] have become popular for the
analysis of multi-subject fMRI data.

Following the introduction of Infomax in 1995 [3], which
has been useful for many applications, now there are a number
of new ICA algorithms that have been developed, each incor-
porating different types of diversity—statistical property—of
the sources, such as higher order statistics (HOS) and sample
dependence [1], and in more flexible ways. Incorporating
greater flexibility into the source model enables more accurate
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characterization of the latent sources, thus leading to improved
performance of ICA algorithms that exploit multiple types of
diversity over simpler models. However, for the analysis of
fMRI data, to date, Infomax has been the most commonly used
algorithm, most likely because it is the first ICA algorithm
applied to fMRI analysis, provides reasonable results [4] and
is the default ICA algorithm in toolboxes such as the group
ICA of fMRI toolboxes such as the group ICA of fMRI
toolbox (GIFT) [5]. Infomax has also been shown to show
similar performance [6] to the popular FastICA algorithm
[7]. Entropy bound minimization (EBM) [8] and entropy
rate bound minimization (ERBM) [9] are two more recently
introduced ICA algorithms and they have been shown to
provide desirable performance on simulated and real fMRI
data, see e.g., [9], [10]. Despite their potential, there have
been nearly no comparisons of the performance of Infomax,
EBM and ERBM on real fMRI data, and those few studies that
have looked at their relative performances, see e.g., [6], [10],
have used limited number of subjects and based the evaluation
on subjective metrics. Due to the increasing number of large
fMRI datasets that include hundreds and even thousands of
subjects, applying these algorithms to larger datasets increases
our confidence and promises to further elucidate the relative
differences between these ICA algorithms.

The desire for such a comparison raises the issue of how to
determine a metric for comparing the different ICA algorithms
for real data. Algorithmic comparison for fMRI analysis is
difficult as decompositions can be quite different depending
on the modeling assumptions of the particular algorithm, and
as such, matching of all the estimated components is usually
not possible. This motivates the use of global measures, such
as functional clustering using dendrograms [11], [12] and time
course frequency power ratio [13], [14]. However, these met-
rics are slightly subjective, thus motivating the development of
fully objective measures of algorithmic performance.

Graph theoretical (GT) analysis has become an efficient
tool for studying the heterogeneity between different groups of
subjects, such as patients with schizophrenia (SZs) and healthy
controls (HCs) [15]. Typically, graphs are constructed from
the anatomically or functionally defined brain components by
using the components as nodes and their dependence such as
temporal correlation or spatial mutual information (MI) as the
edges [15]. Based on these graphs, certain metrics between
components, such as centrality or small worldness [16], are



used to quantify each component’s importance for information
transfer in functional brain networks or the overall efficiency
of information transfer. Metrics are calculated for each subject,
and used to capture variability of either individual subjects or
of subjects groups [17]. We show that GT metrics can provide
an efficient means of performing algorithmic comparison as
well by evaluating each algorithm’s ability to capture group
differences.

In this study, we investigate the performance of Infomax,
EBM and ERBM on a relatively large dataset, which contains
fMRI data drawn from 88 SZs and 91 HCs using the GICA
framework. In order to provide an efficient comparison of
the performances of different algorithms, we use two global
metrics, the dendrogram and time course frequency power
ratio. We also propose the use of the GT metric—centrality—
to evaluate the ability of each ICA algorithm to capture the
latent differences between SZs and HCs. The results show
that ERBM performs best in capturing the latent differences
between two groups, suggesting that incorporating a greater
number of statistical properties of the signals results in better
performance.

II. METHODS AND MATERIALS
A. GICA

The GICA framework enables analysis of fMRI data from
multiple subjects. Let the observed fMRI data from the kth
subject be denoted by Xk e RTXV 1 < k < K, where T
denotes the number of time points and V' denotes the number
of voxels. To reduce the contamination from noise, principal
component analysis (PCA), using an order suggested by the
entropy rate based order selection technique described in [18],
is employed to reduce the dimension of the data for each
subject. For each subject, X% is reduced in dimension from
T to T/, X} = FIMX [ | where FI* € RT'*T is the subject
level reduction matrix, and the reduced data is X* ¢ RT'*V
It is assumed that the subjects share a common component
subspace, and the datasets are temporally concatenated to form
a single data matrix Y € RET XV which is then reduced
to Y € RV*V by a group level PCA, Y = GY, with
G € RVXET" 4 the group level reduction matrix and N
as the order for the common observation subspace. Group
components S € RV*V are then estimated by performing ICA
on the common group subspace Y:

Y = AS

where A € RM*N s the mixing matrix. ICA seeks to
find a group demixing matrix W such that W = Al
and the estimated sources are S = WY. The use of a
single ICA on the common subspace of all datasets helps to
preserve the order of the components across subjects. Follow-
ing the completion of ICA, back-reconstruction is performed
on S to generate the corresponding subject-specific source
estimates S¥1 € RV*V In order to back-reconstruct g[k},
the group level reduction matrix G is blocked by columns,
G = (Gl G2 ... GIF]] with GF e RN*T'. Then,
SI¥ are reconstructed by S = WGHFHF X and the
corresponding subject-specific time courses Al ¢ RT*XN
are also reconstructed, A = (F)T(GH)IW 1, where T
represents the pseudoinverse.

The differences in separation performance for separate
ICA algorithms, such as Infomax, EBM and ERBM, are
related to differences in their assumed latent source models.
Infomax is an ICA algorithm that takes only the diversity of
non-Gaussianity into consideration using a distribution model
implied by a fixed sigmoidal nonlinearity [3]. This fixed non-
linearity is a good match for very focal regions of activation,
however it might significantly bias latent sources relating
to broad regions, such as the default mode network [19].
In contrast to Infomax, EBM does not assume one specific
distribution for the latent sources but instead attempts to upper
bound their entropy through the use of several measuring func-
tions. Each of these functions provides bounds on the entropy,
with the tightest bound being closest to the true entropy. The
use of these measuring functions makes it possible to match
a wide variety of distributions, including those that are sub-
Gaussian, super-Gaussian, unimodal, bimodal, symmetric, as
well as skewed [8], thus potentially leading to more accurate
estimation of the latent sources. Instead of bounding the
entropy of latent sources, ERBM attempts to bound their
entropy rate using measuring functions. By calculating the
entropy rate of sources, one more type of diversity, namely,
sample dependence, is taken into consideration. Since EBM
and ERBM relax the assumptions placed on the fMRI sources
by assuming flexible source distributions, they are expected
to provide improved performance over Infomax. Additionally,
ERBM is expected to have superior performance over the other
two algorithms, since it matches the underlying properties
of the fMRI components namely voxel-wise dependence and
HOS.

B. Global analysis

To compare the performance of the three ICA algorithms,
proper measures are needed. Since it can be difficult to exactly
match all of the estimated components across different algo-
rithms, it is hard to directly compare algorithmic performance
on fMRI data. In order to resolve this issue, we propose the
use of two global measures to compare the performances of
ICA algorithms on real data.

1) Dendrogram: Though ICA assumes that the latent
sources are fully independent, following the performance of
ICA the extracted independent components (ICs) generally
have some dependence due to their functional relevance. A
dendrogram is a natural way to capture this relevance and
facilitate interpretation of the results [20]. Hence, we pro-
pose the use of the dendrogram for the comparison of ICA
algorithms. In this implementation, a dendrogram is generated
using a hierarchical clustering algorithm based on the average
distance between ICs within each cluster. The distance, D,
between each pair of ICs is measured using the normalized
mutual information (NMI), I,o:m, and is defined as,

D(éla =§2) =1- Inorm(<§17 §2)
21(34, 82)
1(81,81) + I(82,89)

where (81, 82) is the mutual information between two esti-
mated components $; and So. Hence, for two similar sources
the distance between them would be close to 0 and for
dissimilar sources it would be close to 1.

=1




1 [
075} [
ﬁ Motor
r" [1:-.[‘:[1 Parietal
Temporal
Fronto-parietal
Occipital

Fig. 1.  Dendrograms of (a) Infomax (b) EBM (c) ERBM. Within each
graph, the vertical lines are ICs and their length indicates the value of distance
between each IC and its neighbors.
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2) Frequency analysis: Another global measure of ICA
algorithmic performance on real fMRI data is the ratio of
time course power spectra in low-frequency band (< 0.1Hz)
to the high-frequency band (> 0.15 Hz) for each IC. Since
the activation in the components is due to the blood oxygen
level-dependent (BOLD) response, which corresponds to the
low frequencies, the lower the ratio between the low-frequency
band and the high-frequency band, the more likely the compo-
nent is to be describing cardiac or respiratory noise as opposed
to true BOLD activation [13], [21].

C. Graph theoretical analysis

Though the previous two measures can be used to assess
the performance of ICA algorithms on real fMRI data, they
are slightly subjective. This motivates the use of objective
GT metrics for assessing the performance of ICA algorithms.
Prior to the construction of a given graph, for each algorithm
and subject, N ICs are estimated and M components are
selected based on their time course power ratio and visual
inspection. Then, using the M ICs of interest as nodes and
the NMI between the corresponding components as the edges,
a fully connected graph, G, is constructed. Beginning with G,
a percentage threshold, 6, is used to retain only the highest
P percent of the edges, thus generating a new graph G'.
We define the percentage of the edges that remain after
thresholding as link density, which increases as the threshold
increases. Then, the weighted graphs are converted to binary
ones, with the edges below the threshold having a value of 0
and those above having a value of 1. In order to avoid very
sparse graphs with small link densities and those with too large
link densities, we limit the link density to range from 20%
to 70%. We then perform a GT analysis on these graphs to
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Fig. 2. Variances of the time course power ratio for three algorithms. The
mean and stand deviation are in magenta, along with a box plot and smoothed
density histogram.
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Fig. 3. (a) Number of nodes showing significant group difference in each
graph as a function of link density. (b) The corresponding functional network
for those nodes that show significant group differences. SM, sensorimotor;
F-P, fronto-parietal; M, motor; O-C, occipital-cerebellum; MV, medial visual;
P, parietal; S, sensory; DMN, default mode network; O, occipital; AF, anterior
frontal.

calculate the centrality of each node:

Mg

P,i,q

H; =

E
paFi

where E, ; , is the number of shortest paths between pairwise
nodes p and ¢ that include node i, F, 4 is the total number of
shortest paths between nodes p and q. Note that high centrality
of the ith node suggests that the 7th IC is important in terms of
the efficiency of the brain’s functional network connectivity.

D. COBRE data

We use the resting state data of the COBRE dataset,
which is available on the COINS data exchange repository
(http://coins.mrn.org/dx) [22], as the fMRI data in this study.
The resting state data includes 88 SZs (average age: 37 + 14)
and 91 HCs (average age: 38 £12). All images were collected
on a single 3-Tesla Siemens Trio scanner with a 12-channel
radio frequency coil using the following parameters: TE = 29
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Fig. 4. Centrality plots for the motor component from (a) Infomax, (b) EBM and (¢) ERBM. Red (blue) triangles along the x-axis indicate significantly higher
(lower) centrality for the SZs group compared to HCs group. The average t-statistic in the region where the difference between the two groups is significant
(0.28-0.5) for Infomax is t = 2.09 (p = 0.038), (0.2-0.5) for EBM is t = —2.05 (p = 0.042) and (0.24-0.58) for ERBM is ¢t = —2.17 (p = 0.032).

ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 mm,
slice gap = 1.05 mm, voxel size 3.75 x 3.75 x 4.55 mm>.
Participants were instructed to keep their eyes open during
the scan and stare passively at a central fixation cross. Each
resting state scan is consisted of 150 volumes. The fMRI data
were realigned with INRIalign algorithm [23], slice-timing
correction was applied using the middle slice as the reference
frame in the functional data pipeline and spatially normalized
to the standard Montreal Neurological Institute space and
resampled to 3 x 3 x 3 mm?, resulting in 53 x 63 x 46 voxels.
Then, the fMRI data are smoothed using a Gaussian kernel
with a full-width at half-maximum of 10 mm.

III. EXPERIMENTAL RESULTS

Accurate estimation of the number of common signals, NV,
is vital to the success of any application of an ICA algorithm.
However, for fMRI data, classical order estimation techniques
based on information theoretic criteria (ITC) may overestimate
the order due to the inherent sample dependence of fMRI data
[24], [25]. A common way to overcome this issue is by using
downsampling to obtain effectively independent and identically
distributed samples [24], [25]. Unfortunately, methods based
on downsampling suffer from a loss of information associated
with the downsampling. More recently, two entropy rate (ER)-
based order estimation techniques are proposed that account
for sample dependence without the use of downsampling: ER
using a finite memory length model (ER-FM) and ER using
an autoregressive model (ER-AR) [18]. Applying these two
methods to each subject in the COBRE data separately, we
find that the mean and standard deviation of the order across
subjects are 72.86 £ 10.40 for ER-FM and 77.33 4 10.91 for
ER-AR. Since the sample correlation structure in ER-FM is
a better match to that in fMRI data due to the finite span of
correlation in the point spread function, we use an order equal
to the mean plus one standard deviation estimated using ER-
FM, which is rounded up to 85 to retain a significant level of
the signal across multiple subjects while introducing minimal
noise to some of the subjects. The use of this high model order
is also well motivated in the literature for achieving a more
useful functional segmentation of the brain, see e.g., [13], [26].

The most stable run is selected using minimum spanning
tree (MST) [19] method for EBM from 10 runs and for ERBM
from 25 runs. Using back-reconstruction, the 85 ICs are esti-
mated for individual subject associated with their time courses.

All the analyses are performed on the back-reconstructed ICs
and time courses.

A. Global comparison

Eighty-five mean ICs are generated by averaging the
back-reconstructed ICs across all subjects. A dendrogram of
the 85 mean ICs is plotted for each algorithm in Fig. 1. In Fig.
1, we label the different clusters using individual colors. The
black lines indicate the ICs corresponding to ventricle, nuclei,
thalamus, motion artifacts and a few incorrectly clustered ICs
of interest. The dendrograms suggest that EBM and ERBM
give clear clusters for all regions of interest, due to the fact
that they provide a close match to the statistical properties
of the data in their implementation. On the other hand, the
results from Infomax do not give a clear fronto-parietal
cluster, which is the main attention associated network in
complex brain connectivity and of high interest in resting
state fMRI data analysis [13]. Visual inspection of the ICs
from Infomax indicates that there is no pure fronto-parietal
component. There are three ICs containing the fronto-parietal
network but have interference with motor. For this reason,
Infomax identifies a very large motor cluster, since some
frontal and parietal components are grouped into motor cluster.

The time course power ratio comparison among the three
algorithms is shown in a violin plot in Fig. 2. The black
curve is the smoothed distribution of ratio within all subjects.
The blue box plot displays the median, the 25th and 75th
percentiles of the time course power ratio with whiskers
extending to the 99.3% confidence interval and some outliers
beyond whisker. The mean and standard deviation are in
magenta. Horizontal magenta and blue line refers to the global
average, 4.57, and median power ratio, 3.42, across ICs from
all three algorithms, respectively. From Fig. 2, we can see
that ERBM has both the highest mean and median power
ratio, though the difference is slightly hard to discern. This
implies that the overall ICs estimated by ERBM correspond
more closely to the BOLD response than those estimated by
EBM and Infomax.

B. Graph theoretical analysis

The first step in constructing a graph for the estimated ICs
consists of first selecting the ICs with time course power ratio



higher than 3. Then, through visual inspection the selected ICs
with large edge effects and ventricles are removed. Finally,
37 components of interest for Infomax, 33 for EBM and 39
for ERBM are retained. The slight difference in number of
retained components is due to the inherent differences among
the three algorithms. The graph, G, is formed, where the
retained components are nodes and pairwise NMI forms the
edges.

For each binarized graph, the centrality is calculated for
each node. We then perform a two-sample t¢-test on the
centrality values of the SZs and HCs for each node, with an
FDR corrected level of significance set at p < 0.05. In order to
prevent nodes from being declared significant by chance, only
those nodes that show significant differences in at least three
successive graphs are declared to be truly significant. Fig. 3(a)
shows the plot for the number of significant components at
each link density. As can be seen in Fig. 3(a), each algorithm
detects a different number of significant components. We
can see that more components from ERBM show consistent
significance in graphs for the majority of link density values,
which gives us a greater ability to explore the differences
between the two groups. Fig. 3(b) shows the corresponding
brain areas of each significant component. We note that all
three algorithms have at least one motor component that shows
a significant group difference. Finally, note that EBM and
ERBM have fronto-parietal components that show significant
difference while Infomax does not.

The results of the GT analysis of the centrality of the motor
component, which is the only common component that shows
consistent significant group difference for each algorithm, are
shown in Fig. 4. From Fig. 4, it is clear that as link density
increases, the centrality of motor component for each method
decreases. The motor component from EBM and ERBM shows
significantly higher centrality in SZs compared to HCs, while
that from Infomax shows lower centrality in SZs compared to
HCs. A potential reason for the fact that the motor component
from Infomax, unlike those from EBM and ERBM, shows
significantly higher centrality for HCs is because this motor
component is unilateral but those of EBM and ERBM are
bilateral. In order to ensure that the differences between the
groups are not purely coincidental, we seek differences that are
consistent across a range of link densities. For this reason, we
measure the consistency of the differences across subjects in
two ways: first, in terms of the total range of density values for
which we see statistically significant differences, and second,
in terms of the average statistical difference between the groups
observed throughout this “significance interval.” The interval
of graph link density in which the motor component shows
significant difference is 0.22 for Infomax, 0.5 for EBM and
0.34 for ERBM. This means that by using EBM, we observe
the highest stability of the statistical differences across link
density values of all the applied ICA algorithms. The averaged
t-statistic from two-sample ¢-test in corresponding significant
interval is t = 2.09 (p = 0.038) for Infomax, t = —2.05
(p = 0.042) for EBM, ¢t = —2.17 (p = 0.032) for ERBM. It
indicates that the motor components from ERBM show greater
significance in its significant interval.

IV. CONCLUSION

The use of BSS methods, such as GICA, for the analysis
of multi-subject fMRI data enables us to uncover the structural
disruptions inherent to patients affected by neurodegenerative
diseases. However, the strength of these claims is based on
the power of the ICA algorithm used to obtain the results.
In this paper, we investigate the performance of GICA using
three ICA algorithms, namely, Infomax, EBM and ERBM, on
a large fMRI dataset. In order to compare the performances
of different ICA algorithms on real fMRI data, we propose
the use of global measures to compare the overall usefulness
of the ICs generated by each algorithm. We also use GT
metrics to evaluate the performance of ICA algorithms by
comparing their ability to capture differences between patients
with schizophrenia and healthy controls. Our experimental
results suggest that ERBM gives the best performance, which
implies that incorporating more statistical information con-
tributes to the extraction of more meaningful components. We
also note that GT analysis is a promising method to assess
the performance of ICA algorithms on fMRI data drawn from
multiple groups, thus motivating the use of GT metrics to
assess algorithmic performance for other neuroscience studies.

REFERENCES

[1] T. Adali, M. Anderson, and G.-S. Fu, “Diversity in independent com-
ponent and vector analyses: Identifiability, algorithms, and applications
in medical imaging,” IEEE Signal Processing Magazine, vol. 31, no. 3,
pp- 18-33, May 2014.

[2] V. D. Calhoun, T. Adali, G. D. Pearlson, and J. J. Pekar, “A method for
making group inferences from functional MRI data using independent
component analysis,” Human Brain Mapping, vol. 14, no. 3, pp. 140—
151, 2001.

[3] A. Bell and T. Sejnowski, “An information maximization approach to
blind separation and blind deconvolution,” Neural Computation, vol. 7,
pp. 1129-1159, 1995.

[4] M.J. Mckeown, S. Makeig, G. G. Brown, T.-P. Jung, S. S. Kindermann,
A.J. Bell, and T. J. Sejnowski, “Analysis of fMRI Data by Blind Sep-
aration Into Independent Spatial Components,” Human Brain Mapping,
vol. 6, pp. 160-188, 1998.

[5] GIFT, “Group ICA of fMRI Toolbox
http://mialab.mrn.org/software/gift/index.html, 2011.

[6] N. Correa, T. Adali, and V. D. Calhoun, “Performance of blind source
separation algorithms for fMRI analysis using a group ica method,”
Magnetic Resonance Imaging, vol. 25, no. 5, pp. 684-694, 2007.

(GIFT),”

[71 A. Hyvirinen and E. Oja, “A fast fixed-point algorithm for independent
component analysis,” Neural computation, vol. 9, no. 7, pp. 1483-1492,
1997.

[8] X.-L. Li and T. Adali, “Independent component analysis by entropy
bound minimization,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5151-5164, Dec. 2010.

[9] ——, “Blind spatiotemporal separation of second and/or higher-order
correlated sources by entropy rate minimization,” in 2010 IEEE In-
ternational Conference on Acoustics Speech and Signal Processing
(ICASSP), March 2010, pp. 1934-1937.

[10] W. Du, H. Li, X.-L. Li, V. D. Calhoun, and T. Adali, “ICA of fMRI
data: Performance of three ICA algorithms and the importance of
taking correlation information into account,” in 2011 IEEE International
Symposium on Biomedical Imaging: From Nano to Macro, April 2011,
pp. 1573 —-1576.

[11] D. Cordes, V. Haughton, J. D. Carew, K. Arfanakis, and K. Maravilla,
“Hierarchical clustering to measure connectivity in fMRI resting-state
data,” Magnetic Resonance Imaging, vol. 20, no. 4, pp. 305-317, 2002.

[12] S. M. Smith, C. F. Beckmann, J. Andersson, E. J. Auerbach, J. Bi-
jsterbosch, G. Douaud, E. Duff, D. A. Feinberg, L. Griffanti, M. P.
Harms et al., “Resting-state fMRI in the human connectome project,”
Neuroimage, vol. 80, pp. 144-168, 2013.



[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

E. A. Allen, E. B. Erhardt, E. Damaraju, W. Gruner, J. M. Segall,
R. F Silva, M. Havlicek, S. Rachakonda, J. Fries, R. Kalyanam et al.,
“A baseline for the multivariate comparison of resting-state networks,”
Front. Syst. Neurosci., vol. 5, p. 2, 2011.

S. Robinson, G. Basso, N. Soldati, U. Sailer, J. Jovicich, L. Bruzzone,
I. Kryspin-Exner, H. Bauer, and E. Moser, “A resting state network
in the motor control circuit of the basal ganglia,” BMC Neuroscience,
vol. 10, no. 1, p. 1, 2009.

E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems,” Nature Reviews Neuro-
science, vol. 10, no. 3, pp. 186-198, 2009.

M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: uses and interpretations,” Neurolmage, vol. 52, no. 3, pp.
1059-1069, 2010.

J. Laney, K. P. Westlake, S. Ma, E. Woytowicz, V. D. Calhoun,
and T. Adali, “Capturing subject variability in fMRI data: A graph-
theoretical analysis of GICA vs. IVA,” Journal of Neuroscience Meth-
ods, vol. 247, pp. 32-40, 2015.

G.-S. Fu, M. Anderson, and T. Adali, “Likelihood estimators for
dependent samples and their application to order detection,” IEEE
Transactions on Signal Processing, vol. 62, no. 16, pp. 4237-4244,
Aug. 2014.

W. Du, Y. Levin-Schwartz, G.-S. Fu, S. Ma, V. D. Calhoun, and
T. Adali, “The role of diversity in complex ICA algorithms for fMRI
analysis,” Journal of Neuroscience Methods, vol. 264, pp. 129-135,
2016.

S. Ma, N. Correa, X.-L. Li, T. Eichele, V. D. Calhoun, and T. Adali,
“Automatic identification of functional clusters in fMRI data using
spatial dependence,” IEEE Transactions on Biomedical Engineering,
vol. 58, no. 12, pp. 3406-3417, 2011.

D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski,
C. H. Moritz, M. A. Quigley, and M. E. Meyerand, “Frequencies
contributing to functional connectivity in the cerebral cortex in resting-
state data,” American Journal of Neuroradiology, vol. 22, no. 7, pp.
1326-1333, 2001.

A. Scott, W. Courtney, D. Wood, R. De la Garza, S. Lane, R. Wang,
M. King, J. Roberts, J. A. Turner, and V. D. Calhoun, “COINS:
an innovative informatics and neuroimaging tool suite built for large
heterogeneous datasets,” Frontiers in Neuroinformatics, vol. 5, p. 33,
2011.

L. Freire, A. Roche, and J.-F. Mangin, “What is the best similarity
measure for motion correction in fMRI time series?” IEEE Transactions
on Medical Imaging, vol. 21, no. 5, pp. 470-484, 2002.

Y.-O. Li, T. Adali, and V. D. Calhoun, “Estimating the number of
independent components for functional magnetic resonance imaging
data,” Human Brain Mapping, vol. 28, no. 11, pp. 1251-1266, 2007.

X.-L. Li, S. Ma, V. D. Calhoun, and T. Adali, “Order detection for
fMRI analysis: Joint estimation of downsampling depth and order by
information theoretic criteria,” in /EEE Int. Symp. Biomedical Imaging:
From Nano to Macro, April 2011, pp. 1019-1022.

V. Kiviniemi, T. Starck, J. Remes, X. Long, J. Nikkinen, M. Haapea,
J. Veijola, I. Moilanen, M. Isohanni, Y.-F. Zang et al., “Functional

segmentation of the brain cortex using high model order group PICA,”
Human Brain Mapping, vol. 30, no. 12, pp. 3865-3886, 2009.



	Introduction
	Methods and materials
	GICA
	Global analysis
	Dendrogram
	Frequency analysis

	Graph theoretical analysis
	COBRE data

	Experimental results
	Global comparison
	Graph theoretical analysis

	Conclusion
	References

